Nonconvex Low Rank Matrix Factorization via Inexact First Order Oracle
نویسندگان
چکیده
We study the low rank matrix factorization problem via nonconvex optimization. Compared with the convex relaxation approach, nonconvex optimization exhibits superior empirical performance for large scale low rank matrix estimation. However, the understanding of its theoretical guarantees is limited. To bridge this gap, we exploit the notion of inexact first order oracle, which naturally appears in low rank matrix factorization problems such as matrix sensing and completion. Particularly, our analysis shows that a broad class of nonconvex optimization algorithms, including alternating minimization and gradient-type methods, can be treated as solving two sequences of convex optimization algorithms using inexact first order oracle. Thus we can show that these algorithms converge geometrically to the global optima and recover the true low rank matrices under suitable conditions. Numerical results are provided to support our theory.
منابع مشابه
A Nonconvex Optimization Framework for Low Rank Matrix Estimation
We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish suffic...
متن کاملTowards Faster Rates and Oracle Property for Low-Rank Matrix Estimation
We present a unified framework for low-rank matrix estimation with nonconvex penalty. A proximal gradient homotopy algorithm is developed to solve the proposed optimization problem. Theoretically, we first prove that the proposed estimator attains a faster statistical rate than the traditional low-rank matrix estimator with nuclear norm penalty. Moreover, we rigorously show that under a certain...
متن کاملNonconvex Matrix Factorization from Rank-One Measurements
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descen...
متن کاملA Proximal Bundle Method for Nonconvex Functions with Inexact Oracles
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...
متن کاملScalable nonconvex inexact proximal splitting
We study a class of large-scale, nonsmooth, and nonconvex optimization problems. In particular, we focus on nonconvex problems with composite objectives. This class includes the extensively studied class of convex composite objective problems as a subclass. To solve composite nonconvex problems we introduce a powerful new framework based on asymptotically nonvanishing errors, avoiding the commo...
متن کامل